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INTRODUCTION 
 
Drafting effective yet equitable examinations for classes is, in 
many ways, an art, the brushstrokes of which are not easily 
conveyable. Notwithstanding this, one overarching objective to 
strive for as the instructor in this regard should be an attempt to 
successfully strike a balance between the targeting of major 
topics covered in the class, while managing to gauge students’ 
command over the more minute, yet altogether pertinent, details. 
It is with such a setting that the author relates some recent post-
examination experiences from the Advanced Structural Analysis 
class (hereafter referred to as Advanced Structures; formal 
course-listing: CEGR 4224/5224), which he was assigned to 
teach for the first time in the spring 2005 semester, ie his second 
spring semester as a new faculty at the University of North 
Carolina at Charlotte, in Charlotte, USA, in which he discovered 
that one of the most fundamental concepts so common and 
prevalent to all the various disciplines of science, mathematics, 
and engineering – that of the straight line – became a major 
stumbling-block for his entire class of 18 engineering students 
(breakdown: 16 BS-level seniors and two MS-level graduates). 
 
BACKGROUND OF ADVANCED STRUCTURES COURSE 
 
As might be inferred by the name Advanced in the course title, 
this class builds on the knowledge acquired in the more 
rudimentary class on structural analysis wherein students are 
primarily involved in the study of beams, trusses and frames 
that are said to be statically determinate, ie equations of 
equilibrium (most commonly written as: ΣFx = 0, ΣFy = 0, and 
ΣMz = 0, in a conventional 2D, xy-rectangular coordinate 
system [1]) are sufficient to determine all needed support 
reactions and internal forces in the aforementioned structures. 
The predominant context of the Advanced Structures course, on 
the other hand, is concerned with the analysis of statically 
indeterminate structures, ie those containing more support 

reactions and/or members than what is required for statical 
stability – these excess reactions and/or members are known 
formally as redundants, and the total number of these is termed 
the degree of statical indeterminacy, denoted commonly as i 
(one of the advantages for choosing to design structures in this 
way is to enable the redistribution of loads in the system should 
certain portions become overstressed or collapsed as a result of 
earthquakes, tornadoes, impact, etc). Consequently, the 
foregoing equilibrium equations alone are insufficient for 
purposes of analyses and must, therefore, be supplemented by 
additional relationships, known as compatibility conditions, 
based on the deformed geometry of the structure. 
 
The techniques used to analyse statically indeterminate 
structures can broadly be divided into two categories: force (or 
flexibility) methods and displacement (or stiffness) methods. 
The latter approach involves the writing of force-displacement 
relations that, when considered with the equilibrium 
requirements, enables the solution of unknown displacements 
and forces; slope-deflection and moment-distribution are but 
two of the stiffness techniques that are commonly taught in this 
classification. The former method consists of satisfying 
compatibility and force-displacement requirements from which 
solutions of redundant forces and/or members are obtained. 
 
In the Advanced Structures course, the author introduced a 
general formulation of the flexibility approach known as the 
Method of Consistent Deformations, which not only constituted 
the basis of one of the two test questions recently posed to his 
students on an examination – out of which, incidentally, the 
essence for this article was spawned – but, likewise, a bona fide 
target of one of the major topics he had covered in considerable 
depth throughout the semester, as well. Originally developed by 
James Clerk Maxwell (1831-1879) in 1864, it was later refined 
by Otto Mohr (1835-1918) and Heinrich Müller-Breslau (1851-
1925) [2]. This approach ingeniously exploits the powerful 
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method of superposition to arrive at a solution by the following 
procedure:  
 
1. An adequate number of redundants (based on i ≡ degree of 

statical indeterminacy) are removed from the original 
indeterminate configuration to render a system that is both 
statically-stable and solvable – known technically as the 
primary structure; 

2. A total of i + 1 primary structures are then considered – 
one for the primary structure as subjected to the external 
loading only, together with a series of i additional primary 
structures corresponding distinctly to each of the various 
redundants that are now imposed upon these members as 
unknown loads (technically, these loads are expressed in 
terms of a product of a known-load of unit-magnitude and 
the, as yet to be determined, unknown redundant); 

3. The primary structure with the external loading is then 
analysed for the i number of deformations, eg deflections 
and rotations, as consistent with each of the released 
redundants, while each of the i remaining primary 
structures are analysed for deformations (technically, 
flexibility coefficients or compliance values, since, by the 
inverse of Hooke’s Law: deformation = compliance × load, 
where the load is taken as unity at this stage, and so 
deformation ≡ compliance); 

4. The unknown redundants are then finally determined by 
solving a system of i linear equations arising from 
conditions of compatibility, ie requirements ensuring that 
the displacements of the primary structure due to the 
combined effect of the redundants and the given external 
loading, conform to the deformations of the original 
indeterminate structure.  

 
Two examples are offered next to illustrate the aforementioned 
methodology involving statically indeterminate beams – both of 
which were solved by students as homework assignments. The 
first has reference to a single degree of indeterminate (SDOI) 
structure, and the second has a multiple degree of indeterminate 
(MDOI) configuration. Following these, the author then 
describes and discusses the specific examination problem that 
he recently posed to his students. 
 
EXAMPLE 1: AN SDOI STRUCTURE 
 
Consider the following propped-cantilever beam of Figure 1 as 
subjected to a uniformly distributed load, w, over its span-
length, L. In this case, the total number of constraints equals 4, 
one horizontal, and one vertical reaction, along with a moment 
at the fixed-end A, denoted as Ax, Ay, and MA, respectively, and 
a single vertical reaction, By, due to the roller support at the 
opposite end, B. 
 

 
 

Figure 1: Propped-cantilever beam. 
 
Since there are four reactions (ie r = 4) in this problem, and, as 
previously mentioned, the number of available equations due to 
equilibrium total 3 (ie ΣFx = 0, ΣFy = 0, and ΣMz = 0), the 
problem contains a degree of indeterminacy, i, of r – 3 = 1; the 
structure is hence classified as being an SDOI beam that 

possesses a sole redundant reaction. To analyse this 
indeterminate beam, the four-step methodology as outlined in 
the preceding section is described below:  
 
1. Due to the presence of a single redundant, one of the 

reactions is selected for removal, such that the resulting 
primary structure remains statically stable and solvable; 
take, for instance, By to be the redundant in this example. 

2. Next, a total of two, ie i + 1 = (1) + 1, primary (and statically 
determinate) structures are analysed for deflections ∆B0 and 
fBB by standard means (ie double-integration, conjugate-
beam, virtual-work, etc) – one, containing only the external 
load, w, and the other, having an imposed unit-load that is 
scaled-up by the, as yet to be determined, By redundant, to 
counter the displacement (see Figures 2 and 3; here, the 
subscript, 0, in the case of the former symbol is used to 
signify its relation to the primary structure having the 
external load, as, likewise, the second subscript, B, of the 
latter, ie flexibility coefficient, indicates its association 
with the primary structure due to the application of the 
redundant-force, By; the first subscripts in each case denote 
the location along the member wherein expressions for the 
deflections are being sought). 

 

 
 

Figure 2: Primary structure with an external load, w. 
 

 
 

Figure 3: Primary structure with an imposed unit-load. 
 
3. The double-integration method: 
 

 EI y" = M            (1) 
 

where E = modulus of elasticity, I = moment of inertia,  
y = deflection, and M = moment, can be conveniently used 
to ascertain the required deflections of both primary 
structures (it should be understood that other methods like 
virtual work, or conjugate-beam, etc, can also be used for 
finding the deflections). To this end, the governing moment-
expressions must be determined at any point, x, along each 
of the beams (ie for 0 ≤ x ≤ L) – resulting in, respectively: 

22

22 wL
wLx

wx
M 0 −+−=             (2) 

  xLM 1 −=                   (3) 

where the subscripts 0 and 1 are used to distinguish 
between the externally- and redundant-loaded primary 
structures, respectively. 
 
To see how the foregoing moments are found, consider, as 
an example, the free body diagram (FBD) of the 
externally-loaded primary structure that is sliced at some 
arbitrary distance, x, away from the left support, A (see 
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Figure 4). In keeping with standard beam sign-conventions 
(eg Ref. [3]), a sagging moment is taken as being positive, 
ie one that has concave-upward, or positive, curvature, 
and, as such, holds water; also, a shearing force is positive 
when it causes clockwise rotation about the midpoint of the 
FBD upon which it acts. 
 

 
 

Figure 4: Primary structure with external load, w, and 
sliced at an arbitrary distance, x, from end A. 
 

Hence, the counterclockwise-positive (ie CCW+) 
summation of moments about the cut-face (c/f), gives: 
ΣMc/f = 0: 

 

 M0 + wx(½x) - wL(x) + (½wL2) = 0              (4) 
 

This can be solved for M0 to yield equation (2). Equations 
(2) and (3) are next substituted into (1) and integrated 
twice to determine the expressions for the unknown 
deflections, as follows: 
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It should be noted that the constants of integration: k1, k2, 
c1, and c2, are all zero due to the boundary conditions for 
this problem, namely that at the fixed-end, the beam can 
neither rotate nor deflect, ie: 

 

at x = 0, y’ = 0                                       (7) 
 

at x = 0, y = 0                                       (8) 
 

Hence, the required deflections at the free-end of each 
primary cantilever can now be solved by substituting L in 
the place of x in (5c) and (6c), resulting in, respectively: 

EI

wL∆B0 8

4

−=                                       (9) 

EI

L
f BB 3

3

=                                      (10) 

4. The value of the unknown redundant, By, can now be 
determined through the compatibility condition that 
requires the deflection of the original propped-cantilever 
beam at the roller-support to be zero, ie ∆B = 0; but, since 
∆B = ∆B0 + fBB By = 0, we have that: 

BB

B0
yyBBB f

∆
BBf∆ −=⇒=+ 00             (11) 

Thus, substitution of (9) and (10) into (11) gives: 

↑=
8

3wL
By                    (12) 

Having now found the value of the redundant for this 
SDOI beam, all of the other reactions can then be found by 
the equations of equilibrium. 

 
EXAMPLE 2: A MDOI STRUCTURE 
 
Taking again the same basic problem that was just discussed, 
except that now, instead of providing a roller-support at end B, 
both ends are completely fixed. At first glance, it appears that  
i = 3, a pair of unknown moment, vertical, and horizontal 
reactions on either end, totalling six in all, versus the three 
equations of equilibrium; however, since the beam is subjected to 
vertical loading only, the horizontal reactions, Ax and Bx, must 
both necessarily be zero. Thus, four unknowns are now compared 
against two available equations of equilibrium (not three, since 
ΣFx = 0 is no longer relevant), and so i = 2 for this problem. 
 
1. Take By and MB as the redundants. 
2. The following three, ie i + 1 = (2) + 1, primary structures 

for deflections are analysed: 
 

 
 

Figure 5: Primary structure with external load, w. 
 

 
 

Figure 6: Primary structure with imposed unit-load. 
 

 
 

Figure 7: Primary structure with imposed unit-moment. 
 

where fBB|yy and fBB|θy represent the compliance at end B due 
to redundant, By, that result in, respectively, a deflection 
and rotation arising from the imposed unit-vertical load; 
similarly, fBB|yθ and fBB|θθ represent the compliance at end B 
due to the redundant, MB, resulting in, respectively, a 
deflection and rotation as arising from the imposed unit-
moment. 

3. Again, by use of the double-integration method, the 
following deflections can be found: 
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Note that fBB|θy ≡ fBB|yθ, as expected, due to the Maxwell-
Betti reciprocal theorem [4]. 

4. The unknown redundants, By, and MB, can now be found 
through the compatibility conditions, which require that  
∆B = 0 and θB = 0. Hence, a pair of equations must be 
solved simultaneously that may be represented in matrix 
form, as follows: 
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The substitution of (13) - (15) into (16) yields, therefore, 
the following solutions for the redundants: 

12
;

2
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M
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EXAMINATION PROBLEM WITH THE STRAIGHT LINE 
 
During the class-meeting preceding the examination, the author 
announced his intentions to assign an MDOI structure to the 
students – specifically, one with i = 2 – which would be 
furnished with some of the (five) unknown deflections. In so 
doing, students could test their abilities to determine deflections 
(a most significant part of the course) while gauging their 
proficiency in solving a matrix-equation of the form of (16), in 
the limited time allotted for the examination period. Further, the 
author wanted to draft an examination question similar enough to 
the homework problem that they had already solved (see the 
preceding section), yet sufficiently different to evaluate their 
critical thinking skills. Based on these criteria, he came up with 
the problem shown in Figure 8, having a linearly varying load of 
intensity w starting at end A and tapering to zero at mid-span. 
 

 
 

Figure 8: Fixed-fixed beam for the examination. 
 

Prior to finalising the examination problem, the author 
considered furnishing his students with the load-equation; 
however, upon further deliberation on this possible option, he 
decided that engineering students (seniors and graduates, no 
less!) ought to be able to apply their knowledge of the line-
equation to establish the correct expression that characterises 
the intensity of the load as a function of the distance, x, along 
the member. Much to his amazement, the vast majority of those 
in his class stumbled upon this most elementary segment of the 
test-question – the piece that arguably has little, if anything at 
all, to do with the course-content – and yet, due to a lack of 
appreciation and understanding of such a core-concept 
(commonly taught at the secondary-level), there could be no 
hope of them solving the remainder of the actual structural 
engineering problem-at-hand. Out of 18 people in the class, not 
one single person was able to correctly solve the problem. Even 
during the test-period, before the time had expired, it became 
quite apparent that the majority of students were not too happy. 
Many vocalised their despondency by complaining that there 
was not enough time (1.5 hours) and that the test was too long 
(even though there were only two questions, with the second 
being especially designed as a straightforward slope-deflection 
problem – a freebie of sorts). Upon leaving the classroom, one 
student even branded the test as being impossible. In order to 

dismiss such objections of inadequate time-allotment or the 
possibility that an anomaly as this resulted because of the 
students’ unfamiliarity with such a problem, the author tried a 
small experiment. Without revealing his plan to his students 
beforehand, the very next class-meeting (ie two days later) he 
gave everyone a re-take of the mid-term – a (golden) 
opportunity for people to redeem themselves after having had 
ample time to think through the problem. One other aspect of 
the re-take worth mentioning is that the slope-deflection 
problem (ie the freebie) was eliminated so as to allow students 
the entire 1.5 hours to focus on the single (impossible) problem. 
With even more disappointment this second time around than 
the first, again, no one was able to correctly solve the problem. 
 
Interestingly, later that same day, following the initial 
examination, one student told the author that they had been 
attempting a solution of the problem for the past three hours but 
to no avail. When asked to show their work, the very first thing 
that drew the author’s attention on their scratch-paper was the 
following expression that they had derived for the loading-
profile: -2x + w, the author then proceeded to explain that the 
expression was incorrect, since, for example, at x = L/2, the 
load based on their equation would yield a value of w - L, 
which apart from being erroneous (ie it is 0 there), is also 
meaningless from a units-standpoint (w is given in terms of 
load per unit distance, and L, in distance alone). When the 
author explained how the correct expression (ie (-2w/L)x + w 
(valid for 0 ≤ x ≤ L/2)) for the linearly-varying load could be 
obtained through the standard equation of a line (y = mx + b), 
the student commented that had they been given this 
information during the examination, they would have been able 
to successfully solve the problem. 
 
CONCLUSIONS 
 
Empirically it may be intimated that most undergraduate, even 
many graduate, engineering students, lack a general mastery 
over the fundamental concepts of mathematics that the 
instructor oftentimes assumes as existing to the contrary. It has 
been shown in this article how one of the most elementary and 
pervasive concepts within the sciences – that of the straight line 
– was recently the chief stumbling source for a class consisting 
of 18 upper-division undergraduate and Master’s-level graduate 
structural engineering students. In conclusion, then, if one 
intends to responsibly educate the next generation of engineers, 
one must seriously consider returning back to the basics. More 
emphasis must be placed on mathematics in a curriculum – the 
very language underlying the engineering discipline (despite its 
unpopularity with students, and the author ventures, some 
colleagues) – if we are to graduate engineers who can 
successfully use these basic ideas to solve practical problems, 
then what remains elusive to them now, may regress into an ill-
fated future for society as a whole, tomorrow. 
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